3.666 \(\int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=317 \[ \frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

2/3*b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+8/3*b^2*(2*a^2-b^2)*sin(d*x+c)*sec(d*
x+c)^(1/2)/a^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)-2/3*b*(9*a^2-8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d
*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2
)/a^3/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*(3*a^4-15*a^2*b^2+8*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^3/(a^2-b^2)^2/d/((b+a*c
os(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.73, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3847, 4100, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (-15 a^2 b^2+3 a^4+8 b^4\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*b*(9*a^2 - 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(3*a^4 - 15*a^2*b^2 + 8*b^4)*EllipticE[(c + d*x)/2, (
2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c +
 d*x]]) + (2*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (8*b^2*(2*a
^2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3847

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {-\frac {3 a^2}{2}+2 b^2+\frac {3}{2} a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (3 a^4-15 a^2 b^2+8 b^4\right )-\frac {1}{2} a b \left (3 a^2-b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}+\frac {\left (3 a^4-15 a^2 b^2+8 b^4\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=-\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.38, size = 208, normalized size = 0.66 \[ \frac {2 \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+b) \left (\frac {a b^2 \sin (c+d x) \left (a \left (9 a^2-5 b^2\right ) \cos (c+d x)+8 a^2 b-4 b^3\right )}{\left (a^2-b^2\right )^2}+\frac {\left (\frac {a \cos (c+d x)+b}{a+b}\right )^{3/2} \left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+b \left (-9 a^3+9 a^2 b+8 a b^2-8 b^3\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )}{(a-b)^2}\right )}{3 a^3 d (a+b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)*((((b + a*Cos[c + d*x])/(a + b))^(3/2)*((3*a^4 - 15*a^2*b^2 + 8*b^4
)*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + b*(-9*a^3 + 9*a^2*b + 8*a*b^2 - 8*b^3)*EllipticF[(c + d*x)/2, (2*a)/
(a + b)]))/(a - b)^2 + (a*b^2*(8*a^2*b - 4*b^3 + a*(9*a^2 - 5*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))
/(3*a^3*d*(a + b*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [F]  time = 1.20, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}{b^{3} \sec \left (d x + c\right )^{4} + 3 \, a b^{2} \sec \left (d x + c\right )^{3} + 3 \, a^{2} b \sec \left (d x + c\right )^{2} + a^{3} \sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*sec(d*x + c)^4 + 3*a*b^2*sec(d*x + c)^3 + 3*a^2*b*se
c(d*x + c)^2 + a^3*sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 1.87, size = 3103, normalized size = 9.79 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-2/3/d*(-3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^5-8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^5+3*cos(d*x+c)*sin(d*x+c)*E
llipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))
/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^5+3*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a
^5-3*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF(
(-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^5+8*cos(d*x+c)*sin(d*x+c)*EllipticE((-1
+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*(1/(1+cos(d*x+c)))^(1/2)*b^5+3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^5-3*a^3*b^2*((a-b)/(a+b))^(1/2)-11*a^2*b^3
*((a-b)/(a+b))^(1/2)+4*a*b^4*((a-b)/(a+b))^(1/2)-3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^3*b^2+3*cos(d*x+c)^2*((a
-b)/(a+b))^(1/2)*a^4*b-4*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b^3+3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^4*b-12*
cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b^2+18*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^3+8*cos(d*x+c)*((a-b)/(a+b))^(1
/2)*a*b^4-3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b^3+18*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b^2-12*cos(d*x+c)
^2*((a-b)/(a+b))^(1/2)*a*b^4-6*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^4*b-3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*a^5+3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4
*b*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-15*EllipticE((-1+cos(d*x+
c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)
*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a^4*b*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-9*EllipticF((-
1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+6*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*a^2*b^3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+8*
EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+8*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d
*x+c),(-(a+b)/(a-b))^(1/2))*b^5*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x
+c)+8*b^5*((a-b)/(a+b))^(1/2)-15*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+c
os(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2+8*cos
(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(
d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4-9*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(-(a+b)/(a-b))^(1/2))*a^4*b+6*cos(d*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos
(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2+8*cos(d
*x+c)^2*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*
x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3-3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*a^3*b^2+14*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(
d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3+8*cos(d*
x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4+3*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos
(d*x+c)))^(1/2)*a^4*b-15*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b
)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^3*b^2-15*cos(d*x+c)*s
in(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*b^3+8*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((
a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x
+c)))^(1/2)*a*b^4-12*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1
/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b)*((b+a*cos(d*x+c))/co
s(d*x+c))^(1/2)/(b+a*cos(d*x+c))^2/(1/cos(d*x+c))^(1/2)/sin(d*x+c)/a^3/((a-b)/(a+b))^(1/2)/(a+b)^2/(a-b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**(5/2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________